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Abstract

We present a new procedure which enables to extract a scattering
matrix S (l) as a complex function of angular momentum directly from
the scattering data, without any a priori model assumptions implied.
The key ingredient of the procedure is the evolutionary algorithm with
di¤used mutation which evolves the population of the scattering matrices,
via their smooth deformations, from the primary arbitrary analytical S (l)
shapes to the �nal ones giving high quality �ts to the data. Due to the
automatic monitoring of the scattering matrix derivatives, the �nal S (l)
shapes are monotonic and do not have any distortions. For the 16O-16O
elastic scattering data at 350 MeV, we show the independence of the �nal
results of the primary S (l) shapes. Contrary to the other approaches, our
procedure provides an excellent �t by the S (l) shapes which support the
�rainbow�interpretation of the data under analysis.

PACS number(s): 24.10.Ht, 25.70.-z, 25.70.Bc

1 Introduction

S-operator is a fundamental quantity of the scattering theory, which incorpo-
rates, by a general assumption, all possible information on any possible scatter-
ing process (including particle creation/destruction). In the case of an elastic
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scattering, the diagonal matrix elements of S-operator in the angular momen-
tum representation can be given in general form as

S (l) = � (l) e2i'(l); (1)

where the S-matrix modulus � (l) and the scattering phase ' (l) are real smooth
functions of l. The unitarity of the S-matrix for the composite-particle�nucleus
scattering in the presence of nuclear absorption requires that � (l) � 1, so we
put

� (l) = e�2�a(l); (2)

where the nuclear absorption phase �a (l)must be a real smooth positive function
of l.
Since the colliding nuclei have electric charges, then the scattering phase

' (l) can be divided into two parts

' (l) = �r (l) + �C (l) ; (3)

where the nuclear refraction phase �r (l) and the Coulomb scattering phase
�C (l) must be real smooth functions of l.
From a general physics viewpoint, the only restrictions we may impose on

the nuclear phases �a;r (l) to be determined are their �nite values at small l,
total vanishing at su¢ ciently large l and smooth behavior in the intermediate
region. The most natural and simple approximation for �a (l) (or � (l)) and �r (l)
is a monotonically descending (for � (l), ascending to unity) function which can
be easily modelled with help of, say, the Fermi-step or Gauss functions. For the
case of elastic heavy-ion scattering at intermediate energies (&20 MeV/nucleon),
the S-matrix approaches of such a kind (see, e.g., [1], [2], [3], [4]) and the optical
potential models which yield S (l) with such a behavior (see, e.g., [5], [6]) have
appeared quite successful and argued for the so-called �rainbow�interpretation
of the data. However, these models have not allowed the adequate description
of all the features of the data measured.
At the same time, in many cases the quality of �t can be improved when

the phases �r (l)are modi�ed by the additional surface terms of di¤erent forms
(see, e.g., [7], [8]). Such modi�cations, in general, make the S (l)dependence
nonmonotonic. Note also the S-matrix model with the additional derivative-
like interior term in the absorption phase �a (l) [9]. The nonmonotonic behavior
of the described type is also inherent in the scattering matrices found with help
of the optical potentials which have both the standard Saxon-Woods forms and
the ones with the additional surface terms (see, e.g., [6], [10], [11]). In spite of the
nonmonotonicity of S (l) in these approaches, the mentioned above �rainbow�
interpretation of the data is, nevertheless, preserved.
Further substantial improvement in the quality of �t is achieved with help of

the more �exible S (l) forms which allow the phases to behave nonmonotonically
for all relevant l. Such a nonmonotonic behavior is provided by extending the
standard (monotonic) S-matrices with the series of the pole-like terms (see,
e.g., [12]) or the proper (say, spline) basis functions (see, e.g., [13], [14], [15]).
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The similar behavior is inherent in the S-matrices calculated from the optical
potentials which have the additional derivative-like interior terms or have the
more complicated forms obtained with use of the spline functions or the Fourier-
Bessel series (see, e.g., [5], [16], [17], [18]). In spite of the excellence of the quality
of �t provided in such approaches, the �rainbow� interpretation of the data
appears to be no longer valid, which rises the problem of �nding the physical
meaning of the results obtained this way.
Clearly, all the approaches mentioned above are more or less model-dependent

because the functions used to model the phases �a;r (l) and the real and imag-
inary parts of optical potential V (r) and W (r) are more or less the properly
parametrized analytical ones. Thus, the search spaces of all possible shapes for
the S-matrix and the optical potential are strongly reduced and, consequently,
the data analyses performed on such spaces can lead to the incorrect physical
interpretation of the data.
That is the reason why it would be highly desirable to have the procedure

which could be able to extract the scattering matrix and/or the optical po-
tential directly from the experimental data, without introduction of any bias
towards some a priori �physically reasonable�model assumptions. The very
�rst question this procedure must answer to is whether the nonmonotonic (or
pole-like) structures and any other distortions, which appear in the S-matrix
shapes obtained in the most successful approaches, are really necessary to re-
produce the experimental data studied. This will help us to shed more light on
the applicability of the �rainbow� interpretation to the heavy-ion collisions in
the wide range of energies and mass numbers.

2 Model-free determination of the scattering ma-
trix

To develope the desired procedure which determines S (l) directly from the data,
data �! S (l), we need to solve the problem in its most explicit form where each
value of �a;r (l) is treated, generally, as an independent �tting parameter. This
makes the problem parameter space highly dimensional and the choice of an
appropriate search method crucial. Evolutionary (or genetic) algorithms (EA�s)
have been many times proven very e¢ cient in dealing with very di¢ cult physical
problems (see, e.g., [19], [20], [21], [22]), so we have chosen EA as a key element of
our procedure. Note that our algorithm resembles the so-called smooth genetic
algorithm proposed in [23].
According to the general ideology of the EA implementation, we deal with

the population of N individuals. Each individual is the S-matrix presented as
the pair of the real-valued lmax-dimensional vectors (�a (l) ; �r (l)), l = 0; 1; :::; lmax�
1. The �tness of each individual re�ects the quality of data �tting provided
by the individual�s S-matrix. By using the mutation operation the algorithm
evolves the initial population of the badly �tted individuals to the �nal popu-
lation of the highly �tted ones.
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Every iteration of our procedure contains the following steps.
1. Generate the initial population of N individuals. For each individual, the

vectors �a;r (l) are �lled with help of any monotonically descending function of
l, the �rst derivative of which has the only one minimum. To be de�nite and
to test the robustness of the procedure against various starting conditions, we
choose the following �ve primary models for S (l).
a). The 6-parameter model composed of two Fermi functions:

2�i (l) = gi f (l; li; di) ; f (l; li; di) =

�
1 + exp

�
l � li
di

���1
; i = a; r: (4)

b). The 4-parameter model composed of two Gauss functions:

2�i (l) = gi exp

�
� l

2

d2i

�
: (5)

c). The 5-parameter McIntyre model [1]:

� (l) = f (�l;�la; da) ; 2�r (l) = gr f (l; lr; dr) : (6)

d). The 6-parameter phenomenological model [4]:

2�i (l) = gi
�
(2l + 1) diF (l; li; di) + d

2
iF

2 (l; li; di)
�1=2

fpi (l; li; di) ;

F (l; li; di) = �f�1 (l; li; di) ln [1� f (l; li; di)] ;
pa = 1; pr = 2: (7)

e). The 6-parameter model composed of two power-type functions:

2�i (l) =
gi

l�i + �i
; �i > 2: (8)

The parameters gi, li, di, �i, and �i, are positive. They are chosen for each
individual and each model function at random within some intervals which are
wide enough to produce substantially di¤erent shapes of the phases. Normally,
all the individuals in a given population are initialized with one and the same
function from the set a) - e).
All the mentioned primary models for S (l) are �physically justi�ed�, except

for the case e) which has no physical background. Nevertheless, we have in-
cluded this purely mathematical case to see whether the procedure is able to
�nd �physically meaningful�results under such a tough conditions.
2. Evaluate the �tness of each individual in the population. The �tness

function in our approach consists of two parts. The �rst one is associated with
the quality of the shapes of �a;r (l) while the second one accounts for the quality
of the �tting of the experimental data.
The requirements which the shapes of �a;r (l) must meet in our approach are

as follows.
i). The functions �a;r (l) must be descending.
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ii). The �rst derivatives of �a;r (l) must have only one minimum and no
maxima.
iii). The second derivatives of �a;r (l) must not have more than one minimum

and one maximum.
iv). The third derivative of �r (l) must not have more than one minimum

and one maximum.
v). The logarithmic derivative of �r (l) must be descending.
The requirements i) - iii) ensure the absence of any distortions of the phase

shapes, at least, up to the derivatives of the second order. The condition iv)
is added because we want the de�ection function �(l) � 2d' (l) =dl to have
no shape distortions up to the same order of its derivatives. The condition
v) provides for the permanent decrease of �r (l) with the increase of l. The
requirements i) - iv) are crucial for the shapes of �a;r (l). Thus the penalties
imposed upon the individual in the case of the violation of these requirements
are fatal. The condition v) is not so strong and introduces only the ultimate
bias towards the desired tail of �r (l).
The quality of the �t of the calculated di¤erential cross section to the ex-

perimentally measured one is assessed via the standard �2 magnitude per data
point. The calculations are made by using the expansion of the scattering am-
plitude into a series of Legendre polynomials.. The elastic scattering di¤erential
cross section is equal to the squared modulus of this amplitude.
It is often claimed that the amount of the large scattering angle data is

insu¢ cient to determine the scattering matrix and/or the optical potential in a
unique way. Thus, we add several additional pseudo data points after the last
actual ones, which follow the tendency of the cross section behavior (cf., e.g.,
[14]). Of course, this prescription can not be universal and must be used with
care in the context of the data under study. The incorporation of the invented
data points to the �2 criterium can appear misleading for the �tting procedure,
therefore, we use the penalty-free corridor around those points and apply the
prescription only after the �tting to the actual data set has been accomplished.
3. Let each individual in the population produce M o¤springs. The replica-

tion is performed according to the transformation:

log
�
�0i (l)

�
= log (�i (l)) +Ai Ni (0; 1) D (l; lm;i; dm;i) ; i = a; r; (9)

where �i (l) and �
0
i (l) are the parent�s and o¤spring�s S-matrix phases, respec-

tively, Ai > 0 is the mutation amplitude, Ni (0; 1) denotes a normally dis-
tributed one-dimensional random number with mean zero and one standard
deviation, lm;i stands for the mutation point chosen randomly in the interval
0 � lm;i � lmax � 1, and dm;i > 0 is the value characterizing the di¤useness of
the mutation point. The di¤using function D (l; lm;i; dm;i) must be of the bell-
like shape with the only maximum at l = lm;i and the fall-o¤ tail around this
point. To be de�nite and to ensure the proper localization of the consequences
of the mutation we choose the di¤using function in the form:

D (l; lm;i; dm;i) = exp

"
� (l � lm;i)

2

d2m;i

#
: (10)
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The mutation amplitude Ai and the mutation di¤useness dm;i are the quan-
tities automatically tuned within some intervals. The limits of these inter-
vals, having the extremely large values at the beginning of the procedure, are
smoothly decreased in the course of the run, and acquire the small values at
the end. Such a schedule provides for both the removal of the features of the
primary parameterizations a) - e) from the individual�s S (l) and the �ne tuning
of the details of S (l).
4. Evaluate the �tness values of all o¤springs. Sort the o¤springs in a

descending order due to their �tnesses. Select N best o¤springs to form the
new population.
5. Go to step 3 or stop if the best �tness in the population is su¢ ciently

high (the �2 value is small enough).
Evolutionary algorithms are, generally, the global optimization technique

which, however, can not guarantee that the optimum found is the global one.
Therefore, it is necessary to run the procedure several times. Besides, there is no
way to know in advance what will be the minimum value of the �2 magnitude.
Thus, it is instructive to monitor the dynamics of the best, worst and mean
�tness values and the rms deviation from the mean �tness in the population
during those several runs of the procedure. Such monitoring usually helps to
localize the region of the potentially lowest �2 values.

3 Scattering matrix for the 16O-16O elastic scat-
tering at 350 MeV

We have applied our technique to analyze the well known test case of the 16O-
16O elastic scattering at 350 MeV, for which the approaches giving very good
quality of �t predict the existence of the nonmonotonic structures in the S-
matrix (see, e.g., [12], [13]).
In our calculations, bearing in mind that the collision energy is su¢ ciently

high, we let �C (l) in Eq. (3) to be the quasiclassical phase of the point-charge
scattering by the uniformly charged sphere (see, e.g., [3]) having the radius
RC = 0:95� 2� 161=3 [24]. The calculated di¤erential cross sections have been
symmetrized for the scattering of identical nuclei. Besides, the experimental
errors are assumed to be equally weighted (10% error bars).
Figures 1-5 show the results of our calculations with the primary models a) -

e) for S (l), respectively. The �2 values for our �ts to the data are 2:4�2:5. For
each initial case, the results of �ve di¤erent runs of the procedure are presented
to display the error bands within each of the primary S (l) models. Figure
6 compiles �ve best results from Figs. 1-5 to illuminate their sensitivity to
the details of the particular primary S (l) model. Figure 7 demonstrates the
consequences of the consideration of the invented data points in the region of
large scattering angles.
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4 Discussion

The evolutionary procedure of determining the scattering matrix, presented in
this publication, is aimed to search for the globally optimal solution. But, being
aware of the complexity of the problem under study and the fact that the actual
number of �tting parameters (twice the number of angular momenta which is
lmax =120 in our test case) is substantially greater the actual number of data
points (which is equal to 105 in our test case), we do not expect to achieve it.
Therefore, we consider the obtained results (Figs. 1-7) as very promising.
First of all, we see that within every model used for the primary S (l) depen-

dence, regardless the variety of their shapes, the moduli � (l) and the nuclear
refraction phases �r (l), as well as the total de�ection functions �(l), obtained
in di¤erent runs of the procedure, go close to each other (Figs. 1-5). The
di¤erences between them can sometimes be seen only in the enlarged or even
logarithmic scale. The same observation can be made if one analyzes the com-
pilation of the best results (Fig. 6), which points on their independence upon
the initial conditions. At the same time, the nuclear phases �r (l) deviate from
each other in the region of large angular momenta. There the scattering matrix
moduli � (l) are very close to unity, which makes the contributions of the par-
tial waves with these values of l to the scattering amplitude vanishingly small.
To introduce the corresponding bias into the searching procedure, we probably
need more precise experimental information in the region of small scattering
angles. Nevertheless, we are able to conclude that, under the requirements i) -
v) imposed upon the phases �a;r (l), we have managed to localize the region of
the scattering matrix shapes which give the lowest values to the �2 magnitude.
It is important to emphasize the remarkable fact that the application of the

power-type function e) [Eq. (8)] as the primary S (l) parameterization, which
has no proper physical meaning, does not produce any di¢ culties for our pro-
cedure to �nd the physically meaningful scattering matrix (Fig. 5). From the
formally mathematical viewpoint, the iterative application of the replication
transformation (9) to the phases �a;r (l) is equivalent to the addition to the pri-
mary phases of the ultimately �in�nite�sum of the di¤using functions (10) with
various parameters and weights. Due to the special schedule of choosing and
tuning the latter, the phase shapes are transformed almost adiabatically across
the run of the procedure. As the result, the phases evolve to the equilibrium,
with respect to the �tness, shapes which are free from any recollections about
the particular models for the primary S (l) and the di¤using function. That is
why, we believe, our procedure is actually a model-free one.
Somewhat surprising seems the observation that the incorporation of the

additional pseudo data points in the �tness function, which really forces the cross
section to behave as desired, produces no noticeable corrections to the scattering
matrix (Fig. 7) in the whole range of l. This is against the conventional way of
thinking but can be just the feature of that particular data set under study.
From the physics viewpoint, our results support the �rainbow�interpretation

of the given data: the maximum in the di¤erential cross section observed near
50� is identi�ed as the primary nuclear rainbow. The nuclear rainbow angle
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which corresponds to the minimum of the de�ection function �(l) acquires the
values �r = 61 � 64�. At this point, one might ask whether it is possible to
improve the quality of �t, bearing in mind the number of �tting parameters.
In fact, the answer is positive. If, from the very beginning, we abandon all
the requirements i) - v) imposed on the shapes of �a;r (l), then the procedure
becomes able to �nd the results with �2 � 0:5�0:6. But the S-matrices for these
cases are nonmonotonic and substantially di¤erent from run to run, belonging
to di¤erent local optima. The other way to search for the better quality of
�t could be found in testing the stability of the monotonic shapes of the S-
matrices obtained in our study against the nonmonotonic transformations (9).
Then it seems more probable to �nd the results which belong to the same local
optimum or the nearest ones. Following this way, if and only if the substantial
improvement in the quality of �t is accompanied by the repeated observations
of the same equilibrium nonmonotonic structures in S (l), then the appearance
of these structures should be admitted as necessary and the search for their
physical interpretation urgent.
The proposed recipe can also be useful in analyzing some important cases

where the presence of nonmonotonic (or even nonsmooth) structures in the S-
matrix seems to be justi�ed. Namely, these are the cases where, for instance, the
behavior of S (l) is resonance-dominated (see, e.g., [6], [27]), or it is important to
account for the dynamic e¤ects (parity dependence of the interactions between
nuclei, elastic transfer, see, e.g., [28], [29]), or the interference e¤ects condition
the nonmonotonic scattering matrices (see, e.g., [10]). In order to con�rm the
existence of the discussed equilibrium structures in the S-matrix, we need to
extract them directly from the respective experimental data, using, for instance,
our approach with the requirements i) - v) switched o¤ either from the very
beginning or after the monotonic shape of the S-matrix is obtained. If we
succeed, then we must admit that the requirements i) - v) cannot apply to all
cases.
The evolutionary procedure presented in this publication has been initially

devised to determine the scattering matrix in the angular momentum represen-
tation. Obviously, the similar approach can be used to develop the evolutionary
procedure for the determination of radial dependence of a complex optical po-
tential. With help of this procedure, the optical potential can be extracted
directly from the experimental data: data �! V (r). Moreover, using the sim-
ilar procedure, the scattering matrix produced by the optical potential can be
�tted to the scattering matrix extracted directly from the data: data �! S (l)
�! V (r). This means that the optical potential found this way will correspond
to the scattering matrix extracted immediately from the data. Having uni�ed
these three search procedures data �! S (l), data �! V (r), and data �! S (l)
�! V (r) into the one, we obtain a powerful tool for the deep theoretical inves-
tigation of the heavy-ion collisions at intermediate energies.
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Figure 1: Five scattering matrices for the 16O-16O elastic scattering at 350
MeV, calculated by our procedure with the primary model a) for S (l) [Eq.
(4)]. (a) Scattering matrix moduli � (l). The inset shows the region of small
momenta in the logarithmic scale. (b) Nuclear phases �r (l). The inset shows
the region of small momenta in the enlarged scale. (c) The same as (b) but
in the logarithmic scale. (d) De�ection functions �(l). The inset shows the
vicinity of �(l) minima in the enlarged scale. Solid curves correspond to the
best quality of �t to the data �2 = 2:4.
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Figure 2: The same as FIG. 1 but with the primary model b) for S (l) [Eq. (5)].
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Figure 4: The same as FIG. 1 but with the primary model d) for S (l) [Eq. (7)].
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Figure 5: The same as FIG. 1 but with the primary model e) for S (l) [Eq. (8)].
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Figure 6: Five best results from Figs. 1-5. Notations are the same as in FIG. 1.
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Figure 7: Two scattering matrices and di¤erential cross sections for the 16O-
16O elastic scattering at 350 MeV, calculated by our procedure with the primary
model b) for S (l) [Eq. (5)]. Solid (dashed) curves are the results of calculations
with the invented data points taken (not taken) into account in the region of
large scattering angles. (a) Scattering matrix moduli � (l) and (b) nuclear phases
�r (l) in the region of small momenta. (c) �r (l) in the region of large momenta.
(d) De�ection functions �(l) in the vicinity of the minima. (e) The di¤erential
cross sections (ratio to Rutherford). Experimental data are taken from Refs.
[25] and [26]. Solid curves presenting S (l) correspond to the same ones shown
on FIG. 2.
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