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On the basis of a generalized model allowing for different deformations of a nucleus in its initial and ground 
states the analysis of the probabilities of electromagnetic transitions is performed. It is shown that the ap-
proach is the useful tool for investigations of the probabilities of E2-transitions between the states lying be-
low the nucleon binding energy. The experimentally measured probabilities of M1-transitions between the 
analogue and anti-analogue states in the deformed s-d-shell nuclei are in good agreement with the calculated 
ones. 
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1. INTRODUCTION 

During last decades, our knowledge on the nuclear 
structure substantially  enriched due to both the wide 
amount of experimental data derived and the develop-
ment and improvement of nuclear models reflecting im-
portant features of nuclear processes. (In the context, 
note the renaissance of Nilsson-model approach to light 
nuclei [1].) 

The shell model built at the end of 1940th, having 
explained great amount of data associated with the 
ground and weakly excited states of atomic nuclei, faced 
substantial problems. Particularly, the measured values 
of quadrupole momenta for several nuclei appeared to 
be much higher the same values calculated due to the 
shell model. To tackle the problem, in 1950 J.Rainwater 
[2] proposed the following model. A nucleus should be 
considered as composed of the core containing nucleons 
from unclosed shells and a few outer nucleons. The in-
teraction between the valence nucleons and the core 
leads to the equilibrium deformation of the latter. Even a 
small core deformation can condition the appearance of 
a substantial quadrupole momentum because a core con-
tains the major part of nuclear substance. 

Rainwater’s hypothesis was the basis of the gener-
alized model of a nucleus, developed further by A.Borh 
and B.Mottelson [3]. However, as against Rainwater’s 
model, the nuclear deformation in the generalized model 
is a dynamical variable. The explanation of the experi-
mentally discovered rotational spectra was an out-
standing success of the generalized collective model and 
a convincing proof for the existence of unspherical nu-
clei. At the moment, proved is the existence of several 

regions of mass number (A~25, 150<A<190, A>222) 
where nuclei have stable deformations. 

Early investigations on the nucleon motion in the 
spheroid potentials were carried out in refs. [4-7]. The 
most important role was played by the calculations ac-
complished by S.Nilsson [8], which povided the basis 
for successful classification of the wide amount of data 
concerning the spectra of deformed odd nuclei [7]. The 
similar classification for the range of heavy elements 
was done by the authors of ref. [9]. In ref. [10] the valid-
ity of applying the generalized model in Nilsson’s for-
mulation to the light nuclei with 4≤A≤32 was demon-
strated. 

2. GENERALIZED MODEL OF A NUCLEUS  

According to the generalized model, the nucleons 
situated out of the closed shells cause the deformation of 
a nucleus, which depends on the number of valence nu-
cleons and their quantum states. As a result, the mean ef-
fective field (potential) of a nucleus changes, altering 
the nuclear shape from the spherical to the ellipsoidal 
one, at least in the first approximation. The quantum 
characteristics for stationary states of the potential with 
axial symmetry differ from those ones of the spherically 
symmetric potential. 

It is shown that the internal and collective motions 
of nucleons in the deformed nucleus are separated. Then 
the total wave function of a nucleus Ψ can be presented 
as a product of three independent wave functions each 
of which describes separately the rotation of a nucleus 

as a whole I
MKD , its vibrational excitations ϕv and the 

internal excitations χΩ caused by individual nucleons: 
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The total Hamiltonian of such a system can be written as 
a sum of three terms: 

,вибрврвн HHHH ++=                   (2) 

each of which corresponds to the three mentioned types 
of nuclear excitations [11, 12]: the first one describes 
the internal motion of a nucleon regarding the deformed 
core and is characterized by the quantum number Ω 
(Nilsson’s model); the second one describes the rotation 
of a nucleus, keeping its form and internal structure; the 
third one describes collective vibrations of the nuclear 
surface regarding the equilibrium shape of a nucleus. 

2. NILSSON’S MODEL 

According to [8], the spherically symmetric poten-
tial of the shell model have the form: 

;Crωm)r(V sl ⋅+= 22

2

1
                

(3) 

where the first term is the oscillatory potential and the 
second one is the potential of the spin-orbit interaction. 
The parameter ω characterizes the energy of the level 
which is 

                   ( )E NN = + 3 2/ hω
,
N = 012, , ,...

         
(4) 

The diagram of levels generated by the potential (3) is 
shown on fig. 1. These levels are characterized by the 
following quantum numbers: the shell number N , the 
angular momentum l and the total momentum j. Due to 
the symmetry regarding the space rotations and the in-
version at the origin, j and l (and the parity) of the nu-
cleon are good quantum numbers, therefore, N, l, and j 
can be used to denote each level. 

So far many nuclei have more or less deformed 
shapes, the nucleons should be considered as moving in 
the deformed potential.  

In Nilsson’s model, the odd nucleon moves in the 
mean unspherical field of the rest of nucleons. It is also 
assumed that a nucleus is in its ground vibrational state. 
Then the collective motion is caused by the rotation of a 
nucleus around the axis perpendicular to the axis of 
symmetry. In this case, one introduces the one-particle 
Hamiltonian: 
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containing the shell-model Hamiltonian with ellipsoidal 
oscillator potential (first term), the conventional spin-
orbit term and the correction interpolating between the 
square well and oscillator potentials. 

 
Fig. 1. The diagram of energy levels for protons and 

neutrons. The numbers of protons and neutrons on each 
level and the sums of these numbers are displayed at 
right. The oscillatory grouping of levels are shown at 
left. 
 
The coefficients ω⊥ and ω3 are related by the formulae 

,ε
3

2
1ωω 03 





 −=  ,ε

3

1
1ωω 0 





 +=⊥          (6) 

where ε is the parameter characterizing nuclear deforma-
tion. When ε<<1  the coefficients ω⊥ and ω3 satisfy the 
relation: 

;3
03

2 ω=ωω⊥                             (7) 

which is the condition on the nucleus volume to be con-
stant regardless the deformation. The quadrupole mo-
mentum of a deformed nucleus is given by the formula  
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As it follows from eqs. (5) and (6), the potential is de-
termined by four parameters ω0, C, D and ε from which 
only ε strongly depends on nucleus shape. For the given 
nucleus, the parameter ε is usually found from the ex-
perimentally measured values of Q and 〈r2〉. The rest of 
the parameters (ω0, C and D) do not depend on the nu-
cleus shape in the ε<<1  approximation and are derived 
from the nuclear spectra and the radii of spherical nuclei 
(ε=0). The approximate values of these parameters are: 

МэВ,41ω 3
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Nilsson’s model assumes that all nucleons (except 
the last odd one) are paired and do not contribute to the 
nucleus momentum. In order to find the nucleus energy 
and wavefunction one should calculate the one-particle 
levels by solving the Shrödinger equation with the po-
tential (5). For the nuclei with small mass number the 
typical spectrum is shown on fig. 2. 
 

 
Fig. 2. Nilsson’s model scheme of levels. Each level 

might be occupied by no more than two nucleons of the 
same type. 
 

For ε=0 (the case of spherical symmetry) the cal-
culated levels coincide with the corresponding levels of 
spherical harmonic oscillator, and they can be character-
ized by the quantum numbers N, j and l (N is the number 
of oscillator shell). In this case all the levels are degen-
erated (2j + 1)- times. As it is seen from fig. 1, the de-
formation removes the degeneration. The level р3/2 splits 
onto two ones, while the level d5/2 - onto three separated 
ones. The nucleon level with the total momentum j in 
the spherical potential splits in the ellipsoidal one onto 
1/2(2j + 1) different energy levels according to the values 
of К = j , j - 1, j - 2, . . ., 1/2. Here the coefficient 1/2 ac-
counts for the additional degeneration due to the sym-
metry of a nucleus regarding the plane perpendicular to 
its symmetry axis. The states with К and -К  have equal 
energies so the level with |К| can be occupied by two 
nucleons of the same type.  

The symmetry regarding the spatial rotations, ex-
cept the rotations around the symmetry axis, is now vio-
lated so the momenta j and l are not conserved any 
more. In Nilsson’s model conserved are the parity π = (-
1)N and the projection of the total momentum on the 
symmetry axis К so each level is denoted as К

π.  
Nilsson used the calculated one-particle eigenval-

ues and eigenfunctions to derive the total internal energy 
of nuclei, the equilibrium deformations, the one-particle 
excitation levels and also to determine the ground state 
spins, the magnetic moments and the probabilities of 
electromagnetic transitions В(σ,l). The model of un-

spherical nucleus automatically provides for the possi-
bility of existence of the rotational levels in nuclei. The 
rotational bands can appear not only on the ground state 
but on the excited ones (one-particle and vibrational) as 
well. In the nuclei with odd number of nucleons, the in-
teraction between the one-particle and rotational mo-
tions prevails. 

The calculations carried out in [10] showed that 
the generalized model in Nilsson’s formulation success-
fully explained the properties of light nuclei with 
4≤A≤32: the equilibrium deformations, the spins, the 
magnetic and quadrupole momenta and the characteris-
tics of rotational spectra. It turned out that the majority 
of light nuclei are strongly deformed and for several nu-
clei the ratio of ellipsoid half-axes characterizing the de-
formation even exceeds 1.5. 

4. MODIFIED NILSSON’S MODEL  

One of the most important problems is the investi-
gation of a shape of a nucleus in the excited states. 
However, this task is not well tested, especially in the 
range of light nuclei. Up to now, the existence of defor-
mation of light nuclei in both ground and excited states 
is experimentally proven. At the same time, it is usually 
assumed that the deformation does not change with the 
excitation energy. 

In our opinion, this assumption conditioned the 
failure of attempts to explain the probabilities of elec-
tromagnetic transitions in the framework of generalized 
model. Bearing this in mind, we have proposed the new 
approach and developed the following method. Analyz-
ing the probabilities of electromagnetic transitions, we 
treat the nuclear deformation as a variation parameter, 
meaning that the initial and final states are assumed to 
have different deformations. Thus, during the transition, 
the state of core nucleons changes alongside the state of 
the odd nucleon. 

Using the s-d-shell nuclei, we have studied the in-
fluence of the changes in nucleus deformation on the 
probabilities of electromagnetic transitions. The initial 
and final states of a nucleus have been considered for 
different deformations and the contribution of one-
particle part of wavefunction to the probabilities of elec-
tromagnetic transitions in light nuclei have been ana-
lyzed. 

5. PROBABILITIES OF 
ELECTROMAGNETIC TRANSITIONS IN  

s-d-SHELL NUCLEI  

5.1. BOUND STATES 

In order to determine the matrix element of the 
one-particle multipole transition operator  

∑=
=1

)(ˆ
i

itΜ                             (10) 

we consider the systems of one-particle wavefunctions 
for the initial and the final states: 

ϕ1, ϕ2,….. ϕА 

One nucleon over the closed 
shell with magic number 8 
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ψ1, ψ2,….. ψА. 

Here A denotes the number of nucleons in the nucleus; 
indices 1, 2, …А denote the numbers of occupied orbits 
in the initial and the final states. 

The formula takes place: 
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where the determinant elements sijB  are as follows:  
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In the case under study, the operator t̂  is: 

),()1(1ˆ ψϕΥ−+= λµ
λ

λ
λ







r
A

Z
et        (13) 

If λ < K + K/, then the reduced probability of electric 
multipole transitions between the initial and the final 
state with IK and I /K/  taken at different deformations η 
and η/, is equal to: 
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For i = s: 
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while when i ≠ s we have: 
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Λ
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For the case of magnetic multipole transitions, the sum 
of determinants over all orbits occupied by nucleons can 
be divided on two sums - over N orbits occupied by neu-
trons and Z ones taken by protons. Thus for L < K + K’  
we find: 
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The determinant elements for in = sn and ip = sp corre-
spond to the values GML for the neutron and the proton 
from ref. [8]. 

In our previous works [13-18], using E2 transi-
tions, we have investigated the influence of the changes 
in nucleus deformation on the probabilities of electro-
magnetic transitions in 23Na, 25, 27Al, 29, 31P, 35, 37Cl nu-
clei. The calculated value of the matrix element depends 
on two deformation parameters corresponding to the ini-
tial and the final states of the nucleus. Therefore, per-
forming the comparison between the theory and the ex-
periment, in the two-dimensional space of the deforma-
tion parameters we obtain the regions in which the theo-
retical and experimental matrix elements coincide. Ana-
lyzing the bands of transitions from one and the same 
level or onto one and the same state, we are able to re-
duce the regions of possible values of deformation pa-
rameters for some levels and sometimes even give exact 
values. 

.

Table 1. The nucleus deformation parameters in the region 23 < A <37, extracted via comparing 
the experimental and theoretical values of B(E2) for the case L < K + K’ 

Nucleus Ei → Ef, МeV π
iJ  → π

fJ  Ki → Kf B(E2)exp, W. u. δi δf 

 

 

 

 

23Nа 

2.390 →      0 

→ 0.44 
 
 

2.982 →      0 

→ 0.44 

1/2+ → 3/2+ 

1/2+ → 5/2+ 

 
 

3/2+ → 3/2+ 

3/2+ → 5/2+ 

1/2 → 3/2 

1/2 → 3/2 

 
 

1/2 → 3/2 

1/2 → 3/2 

0.076(8) 
3.2(1) 

 
 

0.90(2) 
1.3(4) 

-0.1 
-0.025 
0.225 
-0.1 
-0.1 
-0.1 

 
- 

0.2 
 

0.2 
0.085 
0.2 

-0.025 
-0.175 

0.2 
29
Р 2.423 →      0 3/2+ → 1/2+ 3/2 → 1/2 2.40(65) 0.05÷0.30 0.15 

35Cl 1.219 →      0 1/2+ → 3/2+ 1/2 → 3/2 2.26(32) -0.025 -0.2 
37Cl 1.726 →      0 1/2+ → 3/2+ 1/2 → 3/2 2.32(37) -0.1÷0.30 0 

 
The joint analysis of the transition matrix elements 

allowing for deformations in the initial and final states 
and the other data on the low-lying levels depending on 
the deformation (the position, the quadrupole momenta 
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etc.) also help to determine the values of deformation 
for these levels more exactly. The deformation parame-
ters of the nuclei in the ground and excited states are 
usually extracted either from the data or from the theo-
retical calculations. In both cases the nucleus is treated 
as a deformed object so that the extracted information is 
model dependent. 

The statements about the deformation parameters 
made due to the calculated probabilities of the transi-
tions between the levels lying in the rotational bands 
witness that the deformation parameters are different not 
only for the transitions between one-particle states but 
also between the rotational levels in the band 

5.2. ANALOG AND ANTIANALOG 
STATES OF NUCLEI  

The developed method was applied for the analysis 
of the M1-transitions between the analog (AS) and anti-
analog (AAS) states. Using the technique of Clebsh-
Gordon coefficients, the AS wavefunction with the iso-
spin T> = T0 + 1/2 and the projection Tz = T0 - 1/2 can 
be expressed through the state of the core with the iso-
spin T0 and the projection Tz0 and the state of the nu-
cleon with the isospin t and the projection tz: 

zz
tT

zz ttTTTTttTTA
zz

00
,

2
1

02
1

000
0

∑ −+= . (18) 

The ASS wavefunction will have the form: 
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In the case of the different initial and final defor-

mations, the wavefunctions zz ttTT 00  will have the 

form of Slater determinants composed from different 

sets of Nilsson wave functions describing 

рZNядро +),(  and nZNядро ++− )1,1(  re-

spectively. If one considers AS and AAS in the nucleus 
(N, Z+1) then their wave functions can written as: 
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The indices η> and η< denote the deformation pa-
rameters of AS and AAS composed from the one-

particle sets of Nilsson wavefunctions for рZN +),(  

and nZN ++− )1,1( . In the considered scheme, the 

probability of M1-transition АS → ААS is equal to: 
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Table 2. The deformation parameters of AS and AAS in light nuclei 

Nucleus EA → E A , МeV 
π
AJ  → π

A
J  T> → T< 

B(M1)exp, 
W. u. 

B(M1)sp, 
W. u. 

B(M1)cm, 
W. u. 

ηА A
η  

23Na 
10.016→3.913 

10.872→3.678 

5/2+→5/2+ 

3/2+→3/2+ 

3/2→1/2 

3/2→1/2 

0.27(7) 
0.22(8) 

1.85 
1.59 

0.22 
0.29 

2 
2 

4 
4 

 

27Al 
10.478→6.479 

10.586→3.786 

10.932→4.154 

7/2-→7/2- 

3/2+→3/2+ 

5/2+→5/2+ 

3/2→1/2 

3/2→1/2 

3/2→1/2 

0.7(2) 
0.09(3) 
0.03(1) 

2.24 
0.05 
1.85 

0.90 
0.07 
0.08 

-4 
-4 
-4 

-4 
-4 
-4 

31
Р 9.404→4.431 7/2-→7/2- 3/2→1/2 -0.5(1) 2.24 0.8 -6 -6 
 

 

35Cl 

7.194→1.219 

7.549→3.162 

7.838→4.177 

8.208→1.763 

8.850→2.645 

1/2+→1/2+ 

7/2-→7/2- 

3/2-→3/2- 

5/2+→5/2+ 

7/2+→7/2+ 

3/2→1/2 

3/2→1/2 

3/2→1/2 

3/2→1/2 

3/2→1/2 

0.08(3) 
1.8(6) 
0.7(2) 
0.11(3) 
0.07(2) 

1.95 
2.24 
1.59 
1.85 

- 

0.20 
1.8 
0.38 
0.06 
0.03 

-6 
2 
-6 
-6 
-6 

-4 
-2 
-4 
-4 
-4 

37Cl 10.220→3.103 7/2-→7/2- 5/2→3/2 1.7(4) 1.62  - - 

41K 8.875→1.582 

9.366→2.144 

3/2-→3/2- 

3/2-→3/2- 

5/2→3/2 

5/2→3/2 

0.21(6) 
0.93(9) 

1.59 
0.05 

0.21 
0.35 

-2 
-2 

-2 
-2 
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where 
AA

pZNMpZN
ηη

++ ),()1(),( Μ  and 

AA
nZNMnZN

ηη
+−++− ),1()1()1,1( Μ  are 

calculated with the formula (17). 
In table 2 we present the theoretical and experi-

mental values of the squared reduced matrix elements of 
M1-transitions for several nuclei. 

6. DISCUSSION 

The deformation of shape of atomic nuclei in the 
ground and excited states is one of the most interesting 
properties of nuclear matter. Even a small change in the 
state of the one nucleon can lead to a valuable distortion 
of the form of the nucleus surface and cause the rebuild-
ing of the configuration of states of the rest of nucleons. 
In other words, even a microscopic change can cause the 
alteration of the macroscopic characteristics of a nu-
cleus. That is why the investigations of the influence of 
the nucleus deformations in different states on the ob-
servable values are permanently in the focus. 

The idea that both the one-particle and the rota-
tional excitation states of a nucleus can be characterized 
by the dynamic deformation has appeared quite fruitful: 
the experimental data on the probabilities of electro-
magnetic transitions has been really explained. How-
ever, the question on whether the deformation parame-
ters extracted are equilibrium, i. e. correspond to the ex-
perimentally observed states of nuclei, is still opened. 
Besides, there is also no clarity in the details of the 
mechanism via which the states with different deforma-
tions are excited. It is usually assumed that the one-
particle excitation of a nucleus is caused by the transi-
tion of the last outer nucleon on one of the higher-lying 
energy levels. Such an event must cause the deformation 
of the nucleus shape and its self-consistent one-particle 
potential and, therefore, lead to the alteration of the 
whole one-particle spectrum. In other words, the transi-
tion must hold between the levels calculated in different 
potentials and, so far the final state appears unknown be-
forehand, from the point of view of quantum mechanics 
the transition itself becomes impossible. It seems, one 
should assume that the one-particle excitations are initi-
ated by the alteration of the nucleus shape the result of 
which is the transition of the outer nucleon on one of the 
higher-lying orbits. However, this question also needs 
further study. 
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