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On the basis of a generalized model allowing féfedint deformations of a nucleus in its initiadaground
states the analysis of the probabilities of elantgnetic transitions is performed. It is shown ftthat ap-
proach is the useful tool for investigations of threbabilities of E2-transitions between the st&yaw be-
low the nucleon binding energy. The experimentaliyasured probabilities of M1-transitions between th
analogue and anti-analogue states in the deforpdeshell nuclei are in good agreement with the dated
ones.
PACS: 25.40. Lw, 23.20.-g
regions of mass number (A~25, 150<A<190, A>222)
1. INTRODUCTION where nuclei have stable deformations.

Early investigations on the nucleon motion in the

During L‘;"St dgci\des, o_urhkr&o:/jvledge ct))n Lheﬁgzdegbheroid potentials were carried out in refs. [4TMe
structure substantially enriched due to both theew ot jmnortant role was played by the calculatians

amount of_ experimental data derived and the d_eve_'OEompIished by S.Nilsson [8], which povided the basi
ment and improvement of nuclear models reflectng i ¢ g,ccessful classification of the wide amountata

portan; features of nut;lea_llr proces(sjeT. (In thee«tg)nlt concerning the spectra of deformed odd nuclei The
note the renaissance of Nilsson-model approactyltd | gjnijar classification for the range of heavy elese

nuclei [1].) was done b id-
. . y the authors of ref. [9]. In ref. [183 walid
The shell model built at the end of 194®aving i o applying the generalized model in Nilssofts-

explained great amount of data associated with e ion to the light nuclei with @A<32 was demon-
ground and weakly excited states of atomic nutdeled .4

substantial problems. Particularly, the measurddega
of quadrupole momenta for several nuclei appeaved
be much higher the same values calculated dueeto ti” GENERALIZED MODEL OF A NUCLEUS
shell model. To tackle the problem, in 1950 J.Raitw According to the generalized model, the nucleons
[2] proposed the following model. A nucleus shobkel situated out of the closed shells cause the detmaf
considered as composed of the core containing ongle a nucleus, which depends on the number of valenee n
from unclosed shells and a few outer nucleons. ifthe cleons and their quantum states. As a result, tanref-
teraction between the valence nucleons and the cdegtive field (potential) of a nucleus changeseritig
leads to the equilibrium deformation of the lateven a the nuclear shape from the spherical to the elidado
small core deformation can condition the appeararfice one, at least in the first approximation. The quant
a substantial quadrupole momentum because a core coharacteristics for stationary states of the paaemtith
tains the major part of nuclear substance. axial symmetry differ from those ones of the spialy
Rainwater’s hypothesis was the basis of the genesymmetric potential.
alized model of a nucleus, developed further byokiB It is shown that the internal and collective mosion
and B.Mottelson [3]. However, as against Rainwater'of nucleons in the deformed nucleus are separatesh
model, the nuclear deformation in the generalizedeh the total wave function of a nuclebscan be presented
is a dynamical variable. The explanation of theegxp as a product of three independent wave functioch ea
mentally discovered rotational spectra was an oubdf which describes separately the rotation of aleus

standing success of the generalized collective it .o 5 whoIeD,'\,IK , its vibrational excitationg, and the
a convincing proof for the existence of unspheriua

clei. At the moment, proved is the existence ofesal internal excitationg,, caused by individual nucleons:
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The total Hamiltonian of such a system can be ewnitis
a sum of three terms:

H :HBH+HBp+HBM6p’ (2)

of nuclear excitations [11, 12]: the first one déses
. ) ) m — 72 ———.@
the internal motion of a nucleon regarding the degxl 3812 d’”‘" 3
core and is characterized by the quantum nuniBer —-2d—‘< 2ds/; f BTG
(Nilsson’s model); the second one describes thagtioot grz— 8
of a nucleus, keeping its form and internal strigstthe
: . . L 1912 — 70 ——‘@
third one describes collective vibrations of theslear 2171/2—&——- 2
. L —2p s — 6
surface regarding the equilibrium shape of a nicleu 3hw{ e %2;7,/2——— 4
712 — 8
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each of which corresponds to the three mentionpésty [ g/
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According to [8], the spherically symmetric poten- , 745tz Z @
; . P12
tial of the shell model have the form: Thw ——1p _<__'1pm .
0 —— 175 7S1/2 2 < 2 >
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Fig. 1. The diagram of energy levels for protons and
! . . . neutrons. The numbers of protons and neutrons ch ea
where the first term is the oscillatory potentialdathe level and the sums of these numbers are displayed a

second one is the potential of the spin-orbit ext&on. right. The oscillatory grouping of levels are shoah
The parameter characterizes the energy of the leve|q

which is

The coefficientso; andwy are related by the formulae
En =(N+3/2nw N=012,... (4)

_ 2 - 1
The diagram of levels generated by the potentipig3 03 = “’0(1_58]’ ©p = ‘”0(1+ 3“3]’ (6)
shown on fig. 1. These levels are characterizedhby
following quantum numbers: the shell numié¢r, the wherecsis the parameter characterizing nuclear deforma-

angular momenturh and the total momentum Due to  tion. Whens<<1 the coefficientsw; and a3 satisfy the
the symmetry regarding the space rotations andrthe relation:

version at the origin, andl (and the parity) of the nu- ) .
cleon are good quantum numbers, therefbkd, and] WhW; = Wy; )
can be used to denote each level.

So far many nuclei have more or less deformegyich is the condition on the nucleus volume tacbe-
shapes, the nucleons should be considered as miving;iant regardless the deformation. The quadrupole mo

the deformed potential. mentum of a deformed nucleus is given by the foamul
In Nilsson’s model, the odd nucleon moves in the

mean unspherical field of the rest of nucleonss llso

assumed that a nucleus is in its ground vibratistete. Q= £z<r2> (1+ —s] (8)

Then the collective motion is caused by the rotatiba

nucleus around the axis perpendicular to the akis g

symmetry. In this case, one introduces the ondepart As it follows from egs. (5) and (6), the potentiglde-
Hamiltonian: termined by four parametetg, C, D and & from which

only ¢ strongly depends on nucleus shape. For the given

_ m[ 2 2 4 12 + 02x ] nucleus, the parameteris usually found from the ex-
b ", 0f O +x3) + 03 (5)  perimentally measured values @fand (t°). The rest of
+C(I ) + DIZ. the parametersaf, C andD) do not depend on the nu-

cleus shape in the<<1 approximation and are derived

containing the shell-model Hamiltonian with ellijpdal from the nuclear s_pectra and the radii of sphencalei _
oscillator potential (first term), the conventiorgpin- (£=0)- The approximate values of these parameters are:

orbit term and the correction interpolating betwélea -1
square well and oscillator potentials. ho, = 41A 7 MsB, C = 0w, D = -00210, . (9)




Nilsson’'s model assumes that all nucleons (exceppherical nucleus automatically provides for thesgpo
the last odd one) are paired and do not contritutbe  bility of existence of the rotational levels in theic The
nucleus momentum. In order to find the nucleus g@ner rotational bands can appear not only on the grctaid
and wavefunction one should calculate the onegarti but on the excited ones (one-particle and vibratioas
levels by solving the Shrédinger equation with flie  well. In the nuclei with odd number of nucleons th-
tential (5). For the nuclei with small mass numbee teraction between the one-particle and rotationat m
typical spectrum is shown on fig. 2. tions prevails.

The calculations carried out in [10] showed that
the generalized model in Nilsson’s formulation |ssz
40} fully explained the properties of light nuclei with

4<A<32: the equilibrium deformations, the spins, the
a magnetic and quadrupole momenta and the characteris
am* tics of rotational spectra. It turned out that thejority
of light nuclei are strongly deformed and for sevemu-
any clei the ratio of ellipsoid half-axes charactergthe de-
G formation even exceeds 1.5.

3,50

E/hw,

any 4. MODIFIED NILSSON'S MODEL

One nucleon over the closed One of the most important problems is the investi-
shell with magic number 8 gation of a shape of a nucleus in the excited state

3,00

— a2y However, this task is not well tested, especiatiythie
o a1y range of light nuclei. Up to now, the existencedefor-

w0 mation of light nuclei in both ground and excitadtss
JEE— any is experimentally proven. At the same time, it ssiaily

assumed that the deformation does not change kdth t
excitation energy.

In our opinion, this assumption conditioned the
e of attempts to explain the probabilities eléc-
tromagnetic transitions in the framework of geriessl
model. Bearing this in mind, we have proposed & n
approach and developed the following method. Analyz

v . - ing the probabilities of electromagnetic transifipmve
culated levels coincide with the corresponding IeV¥ oot the nuclear deformation as a variation patame

spherical harmonic oscillator, and they can beattar- neaning that the initial and final states are asslio
ized by the quantum numbeXs j andl (N is the number 5\e gitferent deformations. Thus, during the titiors

of oscillator shell). In this case all the levele @egen- ha state of core nucleons changes alongside dte ot
erated (R+ 1)- times. As it is seen from fig. 1, the de+ha odd nucleon.

formation removes the degeneration. The Ignglsplits Using the s-d-shell nuclei, we have studied the in-
onto two ones, while the level, - onto three separated fj,ence of the changes in nucleus deformation @n th
?hnes. ;}I’hg nlucletont_lelvel I\{\tmh' trtlﬁ tOtI?I m(_)?(—:k;nl]ur? probabilities of electromagnetic transitions. Tétial

e spherical potential splits in the ellipsoidakeoonto , :
thé sphenical p p p and final states of a nucleus have been considiered
1x(2] + 1) different energy levels according to the value§itfarent deformations and the contribution of one-
of K=j,]-1]-2 ... Here the coefficient/2ac-  ricle part of wavefunction to the probabilitiefselec-

counts for the additional degeneration due t0 ¥18-S {omagnetic transitions in light nuclei have beema-a
metry of a nucleus regarding the plane perpendidola lyzed.

its symmetry axis. The states withand X have equal
energies so the level witfK| can be occupied by two 5. PROBABILITIES OF

nucleons of the same type.
: : : ELECTROMAGNETIC TRANSITIONS IN
The symmetry regarding the spatial rotations, ex s-d-SHELL NUCLEI

cept the rotations around the symmetry axis, is ama
lated so the momentpand| are not conserved any

-0,6 -ll),l -0,2 0 0,2 0,4 0,6
A~23
Fig. 2. Nilsson’s model scheme of levels. Each Iev?l.
. . ailur
might be occupied by no more than two nucleonsef t
same type.

For e&=0 (the case of spherical symmetry) the cal

more. In Nilsson’s model conserved are the parity(- 5.1. BOUND STATES
1" and the projection of the total momentum on the |y order to determine the matrix element of the
symmetry axisk' so each level is denoted &S one-particle multipole transition operator
Nilsson used the calculated one-particle eigenval-
ues and eigenfunctions to derive the total inteem&lrgy M= _Zlf(i) (10)
1=

of nuclei, the equilibrium deformations, the onetjute
excitation levels and also to determine the grostade e consider the systems of one-particle wavefunstio
spins, the magnetic moments and the probabilities er the initial and the final states:
electromagnetic transitiong(o,l). The model of un-
q)l! ¢21 """ ¢A
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Here A denotes the number of nucleons in the nucleus;

indicesl, 2, ..4 denote the numbers of occupied orbits-or the case of magnetic multipole transitions, shem

in the initial and the final states. of determinants over all orbits occupied by nucteocan
The formula takes place: be divided on two sums - over N orbits occupiedby-

trons and Z ones taken by protons. ThusLferK + K’

we find:

2 A1
M| :( ¢ ) ho| 2l
2Mc Mg, 16
><|<I/1KK'—K|I'K'>T(;et@0ip,¢jp)x
<3 det(@," .4, ) -detq .4, )x
s, =1 n n n n

(UJi 0 ) =0 g\: p A - (16)

(11)

(w, mw,)= S%detBijS,

where the determinant elemerﬁ‘..ﬁS are as follows:
s _ (lJJi,td)j), ecmu i =S
D),

In the case under study, the operétois:

(12)

ecad 1 #£S. (17)

2
Z S
f=e[1+(—1)hix}rkvw(¢,w> (13) x 3 det(; "¢, )}
A Spl p p

If A<K+K/, then the reduced probability of electric
multipole transitions between the initial and theaF
state withlK andI’K’ taken at different deformations
and/, is equal to:

The determinant elements for=s, andi, =s, corre-
spond to the valueG,, for the neutron and the proton
from ref. [8].
In our previous works [13-18], using2 transi-
2 tions, we have investigated the influence of thenges
‘M(E/\)‘ = in nucleus deformation on the probabilities of lec

2 A magnetic transitions ii*Na, 2> ?/Al, 2 3P, %37C| nu-
2 1 Z ho) 22+1
=e’| 1+ (- =5 ATy
A MC()O

(14)  clei. The calculated value of the matrix elemergedels
ar on two deformation parameters corresponding tarthe
2 tial and the final states of the nucleus. Therefqer-
forming the comparison between the theory and #ie e
periment, in the two-dimensional space of the daéor
tion parameters we obtain the regions in whichtiiee-
retical and experimental matrix elements coincidea-
lyzing the bands of transitions from one and theesa
level or onto one and the same state, we are able-t
duce the regions of possible values of deformagian
rameters for some levels and sometimes even giaet ex
values.

X

1} n r Z S
(1AKK' = K| 1K >s§1det(z//i ;)
Fori =s

. . 2 +1 ,
(llJi.td:j):%(m |M|NI>\/%<I)\OO|I 0) x s
x 3 8zzanan (MK =K |I'A).

NNZ'Z

while wheni # swe have:

Table 1. The nucleus deformation parameters in the regior 23<37, extracted via comparing
the experimental and theoretical values of B(E2}lie case L K + K’

Nucleus | E - E,MeV | 3T -, J7 Ki - K¢ | B(E2)*®, W. u S &
2390 0 | 12" 3/2°| 1/2- 3/2 0.076(8) 0.1 0.2
- 044 | 12" o520 | 1/2- 32 3.2(1) -0.025
0.225 0.2
-0.1 0.085
®Na |20982. 0 |32"-32| 12- 312 0.90(2) -0.1 0.2
044 | 32" 2512 | 1/2- 32 1.3(4) 0.1 -0.025
-0.175
- 0.2
2p 2423 0| 3/2.1/2| 3125 1/2 2.40(65) | 0.05:-0.30 0.15
cl 1.219- 0 | 1/2-3/2°| 1/2- 3/2 2.26(32) -0.025 -0.2
el 1726, 0 | 1/2 - 3/2° | 1/2- 3/2 2.32(37) | -0.1:0.30 0

The joint analysis of the transition matrix elengentand the other data on the low-lying levels depemain
allowing for deformations in the initial and finatates the deformation (the position, the quadrupole mdmen

4



etc.) also help to determine the values of defoonat sets of Nilsson wave functions describing
for these levels more exactly. The deformation pera _ )
ters of the nuclei in the ground and excited staies ‘ﬂapO(N’ Z)+ p> and ‘ﬂapO(N Lz+h+ n> re
usually extracted either from the data or from tieo- SPectively. If one considers AS and AAS in the eusl
retical calculations. In both cases the nucleuseisted (N, Z+1)then their wave functions can written as:
as a deformed object so that the extracted infoomas _ 1
model dependent. |N’Z +1>T> Tre \/HKN’Z) ¥ p>n> ¥

The statements about the deformation parameters 0 (20)
made due to the calculated probabilities of thedira 2T,
tions between the levels lying in the rotationahds 2T—+1|(N -1z +1)+n>n>
witness that the deformation parameters are diftanet 0
only for the transitions between one-particle statet and
also between the rotational levels in the band |N . +1> | 2T, |(N 7)+ >

’ TeTe 2Ty +1" P/

5.2. ANALOG AND ANTIANALOG (21)

STATES OF NUCLEI —;l(N ~1Z+1)+n)
V2T, +1 n<

The developed method was applied for the analysis
of the M1-transitions between the analog (AS) amii+ a The indicesn, andn. denote the deformation pa-
analog (AAS) states. Using the technique of Clebstiameters of AS and AAS composed from the one-
Gordon coefficients, the AS wavefunction with tise-i particle sets of Nilsson wavefunctions fp{tN,Z) + p>
spin T. =Ty + 1/2 and the projection, = Ty- 1/2 can .
be expressed through the state of the core withsthe and |(N —Lz+D+ n>. In the considered scheme, the
spin Ty and the projectio,, and the state of the nu- probability ofM1-transitionAS - AAS is equal to:
cleon with the isospihand the projectioty: ( )

= 22

[A)= % (ToToptt,[To + To - )| To Tos ). (18)

Oz'tz

‘2

K;( N,z +1)“M( M1)|A(N,Z +1))

2
o -2 ~l((N.Z)+p| _[M(MD)[(N.Z+p)) -
The ASS wavefunction will have the form: (21, +1) A A
2
@ = T (ToTontty[To = %To - %) ToTortt,). 19 —((N-1Z+1)+n| [MMD|(N-1Z+n)) |,
Tozot, A A

In the case of the different initial and final defo
mations, the Wavefunction}sTOTOZttZ> will have the
form of Slater determinants composed from different

Table 2. The deformation parameters of AS and AAS in ligictei

Nucleus | Ex - EA,MeV | Ja - J3 | To = T. B(\/I\\/I/lg .Xp’ BS/I\\//I'll)JS'p, Bw'll)im’ Na | M3
2Na 10.016-3.913 | 5/2'-5/2" | 3/2-1/2 | 0.27(7) 1.85 0.22 2 4
10.872-.3.678 | 3/2'-3/2" | 3/2-1/2 | 0.22(8) 1.59 0.29 2 4
10.478-6.479 | 7/2-7/2 | 3/2-1/2 | 0.7(2) 2.24 090 | -4 | -4

Al 10.586-3.786 | 3/2".3/2" | 3/2_1/2 | 0.093) | 0.05 007 | -4 | -4
10.932-.4.154 | 5/2*5/2" | 3/2-1/2 | 0.03(1) 1.85 0.08 -4 -4

p 9.404-4.431 | 7/2-7/2 | 3/2-1/2 | -0.5(1) 2.24 0.8 -6 -6

7.194.1.219 | 1/2'-1/2" | 3/2-1/2 | 0.08(3) 1.95 020 | -6 | -4
7.549.3.162 | 7/2-7/2 | 3/2-1/2 | 1.8(6) 2.24 1.8 2 2

*Cl 7.838.4.177 | 3/2-3/2 | 3/2-1/2 | 0.7(2) 1.59 038 | 6 | -4
8.208-1.763 | 5/2'.5/2" | 3/2-1/2 | 0.11(3) 1.85 0.06 -6 -4
8.850..2.645 | 7/2'.7/2" | 3/2-1/2 | 0.07(2) - 003 | 6 | 4

cl 10.220-3.103 | 7/2-7/2 | 5/2-3/2 | 1.7(4) 1.62 - -
a1 8.875.1.582 | 3/2-.3/2 | 5/2-3/2 | 0.21(6) 1.59 021 | -2 | -2
9.366-2.144 | 3/2.3/2 | 5/2-3/2 | 0.93(9) 0.05 0.35 -2 -2




and >.

where ((N,Z)+ p\nz\\M(Ml)H(N,z +0),

((N-12 +1)+n‘nR‘M(M1)H(N ~1Z+n)  are 4

Na
calculated with the formula (17).

In table 2 we present the theoretical and exper?—'
mental values of the squared reduced matrix elesyant
M1-transitions for several nuclei. 8

6. DISCUSSION 9

The deformation of shape of atomic nuclei in the
ground and excited states is one of the most istiege
properties of nuclear matter. Even a small changee
state of the one nucleon can lead to a valuabtertian
of the form of the nucleus surface and cause theilce
ing of the configuration of states of the rest o€leons.

In other words, even a microscopic change can céase 11.

alteration of the macroscopic characteristics ofiua
cleus. That is why the investigations of the inflae of
the nucleus deformations in different states ondhe
servable values are permanently in the focus.

The idea that both the one-particle and the rotd-3.

tional excitation states of a nucleus can be charzed

by the dynamic deformation has appeared quitefdituit
the experimental data on the probabilities of etect
magnetic transitions has been really explained. How

ever, the question on whether the deformation paraml4.

ters extracted are equilibrium, i. e. corresponth&oex-
perimentally observed states of nuclei, is stileogd.
Besides, there is also no clarity in the detailsthe
mechanism via which the states with different defor

tions are excited. It is usually assumed that the-o 15.

particle excitation of a nucleus is caused by thadi-
tion of the last outer nucleon on one of the highigrg
energy levels. Such an event must cause the deiorma
of the nucleus shape and its self-consistent oni:jea
potential and, therefore, lead to the alterationthad
whole one-particle spectrum. In other words, tlagi-
tion must hold between the levels calculated ifed#nt
potentials and, so far the final state appears awkrbe-
forehand, from the point of view of quantum mechani
the transition itself becomes impossible. It seeomse
should assume that the one-particle excitationgrétie
ated by the alteration of the nucleus shape thdtres
which is the transition of the outer nucleon on ohée
higher-lying orbits. However, this question alscede
further study.
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